Sparse representation of data

نویسندگان

  • Thomas Villmann
  • Frank-Michael Schleif
  • Barbara Hammer
چکیده

The amount of electronic data available today as well as its dimensionality and complexity increases rapidly in many scientific areas including biology, (bio-)chemistry, medicine, physics and its application fields like robotics, bioinformatics or multimedia technologies. Many of these data sets are very complex but have also a simple inherent structure which allows an appropriate sparse representation and modeling of such data with less or no information loss. Advanced methods are needed to extract these inherent but hidden information. Sparsity can be observed at different levels: sparse representation of data points using e.g. dimensionality reduction for efficient data storage, sparse representation of full data sets using e.g. prototypes to achieve compact models for lifelong learning and sparse models of the underlying data structure using sparse encoding techniques. One main goal is to achieve a human-interpretable representation of the essential information. Sparse representations account for the ubiquitous problem that humans have to deal with ever increasing and inherently unlimited information by means of limited resources such as limited time, memory, or perception abilities. Starting with the seminal paper of Olshausen&Field [40] researchers recognized that sparsity can be used as a fundamental principle to arrive at very efficient information processing models for huge and complex data such as observed e.g. in the visual cortex. Nowadays, sparse models include diverse methods such as relevance learning in prototype based representations, sparse coding neural gas, factor analysis methods, latent semantic indexing, sparse Bayesian networks, relevance vector machines and other. This tutorial paper reviews recent developments in the field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery

Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010